Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
2.
Drugs ; 81(18): 2133-2137, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1491483

ABSTRACT

Regdanvimab (Regkirona™) is a recombinant human monoclonal antibody targeted against the severe acute respiratory syndrome coronavirus 2. It is being developed by Celltrion Inc. for the treatment of coronavirus disease 2019 (COVID-19). In September 2021, regdanvimab received full approval in South Korea for the treatment of COVID-19 in elderly patients aged > 50 years with at least one underlying medical condition (obesity, cardiovascular disease, chronic lung disease, diabetes, chronic kidney disease, chronic liver disease, and patients on immunosuppressive agents) and mild symptoms of COVID-19 and in adult patients with moderate symptoms of COVID-19. This article summarizes the milestones in the development of regdanvimab leading to this first approval for COVID-19.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Immunoglobulin G/therapeutic use , SARS-CoV-2/drug effects , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Neutralizing/adverse effects , Antiviral Agents/adverse effects , Antiviral Agents/pharmacokinetics , COVID-19/diagnosis , COVID-19/virology , Clinical Trials as Topic , Evidence-Based Medicine , Host-Pathogen Interactions , Humans , Immunoglobulin G/adverse effects , SARS-CoV-2/pathogenicity , Treatment Outcome , Virus Internalization/drug effects , Virus Replication/drug effects
3.
Drugs ; 81(17): 2047-2055, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1491482

ABSTRACT

Casirivimab/imdevimab (Ronapreve™; REGEN-COV™) is a co-packaged combination of two neutralizing immunoglobulin gamma 1 (IgG1) human monoclonal antibodies (casirivimab and imdevimab) against the spike protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19). Casirivimab/imdevimab received its first emergency use authorization for the treatment of COVID-19 in November 2020 in the USA, with similar authorizations subsequently granted in various other countries, including India, Canada, and Switzerland. In February 2021, casirivimab/imdevimab was granted a positive scientific opinion in the EU for the treatment of COVID-19. In July 2021, casirivimab/imdevimab received its first approval in Japan for the treatment of mild or moderate COVID-19, followed in August 2021 by its conditional approval for the prophylaxis and treatment of acute COVID-19 infection in the UK. The combination was also granted provisional determination in Australia in August 2021, indicating its eligibility to be considered for provisional registration for COVID-19 treatment and prevention. This article summarizes the milestones in the development of casirivimab/imdevimab leading to these first approvals for COVID-19.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19 Drug Treatment , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/pharmacokinetics , Drug Approval , Drug Combinations , Humans , SARS-CoV-2
5.
N Engl J Med ; 385(23): e81, 2021 12 02.
Article in English | MEDLINE | ID: covidwho-1442848

ABSTRACT

BACKGROUND: In the phase 1-2 portion of an adaptive trial, REGEN-COV, a combination of the monoclonal antibodies casirivimab and imdevimab, reduced the viral load and number of medical visits in patients with coronavirus disease 2019 (Covid-19). REGEN-COV has activity in vitro against current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern. METHODS: In the phase 3 portion of an adaptive trial, we randomly assigned outpatients with Covid-19 and risk factors for severe disease to receive various doses of intravenous REGEN-COV or placebo. Patients were followed through day 29. A prespecified hierarchical analysis was used to assess the end points of hospitalization or death and the time to resolution of symptoms. Safety was also evaluated. RESULTS: Covid-19-related hospitalization or death from any cause occurred in 18 of 1355 patients in the REGEN-COV 2400-mg group (1.3%) and in 62 of 1341 patients in the placebo group who underwent randomization concurrently (4.6%) (relative risk reduction [1 minus the relative risk], 71.3%; P<0.001); these outcomes occurred in 7 of 736 patients in the REGEN-COV 1200-mg group (1.0%) and in 24 of 748 patients in the placebo group who underwent randomization concurrently (3.2%) (relative risk reduction, 70.4%; P = 0.002). The median time to resolution of symptoms was 4 days shorter with each REGEN-COV dose than with placebo (10 days vs. 14 days; P<0.001 for both comparisons). REGEN-COV was efficacious across various subgroups, including patients who were SARS-CoV-2 serum antibody-positive at baseline. Both REGEN-COV doses reduced viral load faster than placebo; the least-squares mean difference in viral load from baseline through day 7 was -0.71 log10 copies per milliliter (95% confidence interval [CI], -0.90 to -0.53) in the 1200-mg group and -0.86 log10 copies per milliliter (95% CI, -1.00 to -0.72) in the 2400-mg group. Serious adverse events occurred more frequently in the placebo group (4.0%) than in the 1200-mg group (1.1%) and the 2400-mg group (1.3%); infusion-related reactions of grade 2 or higher occurred in less than 0.3% of the patients in all groups. CONCLUSIONS: REGEN-COV reduced the risk of Covid-19-related hospitalization or death from any cause, and it resolved symptoms and reduced the SARS-CoV-2 viral load more rapidly than placebo. (Funded by Regeneron Pharmaceuticals and others; ClinicalTrials.gov number, NCT04425629.).


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Neutralizing/administration & dosage , Antiviral Agents/administration & dosage , COVID-19 Drug Treatment , Adolescent , Adult , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Neutralizing/pharmacology , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , COVID-19/mortality , Dose-Response Relationship, Drug , Double-Blind Method , Drug Combinations , Female , Hospitalization/statistics & numerical data , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Pregnancy , Pregnancy Complications, Infectious/drug therapy , Proportional Hazards Models , Viral Load/drug effects , Young Adult
7.
N Engl J Med ; 385(9): 803-814, 2021 08 26.
Article in English | MEDLINE | ID: covidwho-1373469

ABSTRACT

BACKGROUND: Additional interventions are needed to reduce the morbidity and mortality caused by malaria. METHODS: We conducted a two-part, phase 1 clinical trial to assess the safety and pharmacokinetics of CIS43LS, an antimalarial monoclonal antibody with an extended half-life, and its efficacy against infection with Plasmodium falciparum. Part A of the trial assessed the safety, initial side-effect profile, and pharmacokinetics of CIS43LS in healthy adults who had never had malaria. Participants received CIS43LS subcutaneously or intravenously at one of three escalating dose levels. A subgroup of participants from Part A continued to Part B, and some received a second CIS43LS infusion. Additional participants were enrolled in Part B and received CIS43LS intravenously. To assess the protective efficacy of CIS43LS, some participants underwent controlled human malaria infection in which they were exposed to mosquitoes carrying P. falciparum sporozoites 4 to 36 weeks after administration of CIS43LS. RESULTS: A total of 25 participants received CIS43LS at a dose of 5 mg per kilogram of body weight, 20 mg per kilogram, or 40 mg per kilogram, and 4 of the 25 participants received a second dose (20 mg per kilogram regardless of initial dose). No safety concerns were identified. We observed dose-dependent increases in CIS43LS serum concentrations, with a half-life of 56 days. None of the 9 participants who received CIS43LS, as compared with 5 of 6 control participants who did not receive CIS43LS, had parasitemia according to polymerase-chain-reaction testing through 21 days after controlled human malaria infection. Two participants who received 40 mg per kilogram of CIS43LS and underwent controlled human malaria infection approximately 36 weeks later had no parasitemia, with serum concentrations of CIS43LS of 46 and 57 µg per milliliter at the time of controlled human malaria infection. CONCLUSIONS: Among adults who had never had malaria infection or vaccination, administration of the long-acting monoclonal antibody CIS43LS prevented malaria after controlled infection. (Funded by the National Institute of Allergy and Infectious Diseases; VRC 612 ClinicalTrials.gov number, NCT04206332.).


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal/therapeutic use , Antimalarials/therapeutic use , Malaria, Falciparum/prevention & control , Adult , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Protozoan/blood , Antimalarials/administration & dosage , Antimalarials/adverse effects , Antimalarials/pharmacokinetics , Dose-Response Relationship, Drug , Healthy Volunteers , Humans , Infusions, Intravenous/adverse effects , Injections, Subcutaneous/adverse effects , Middle Aged , Plasmodium falciparum/immunology , Plasmodium falciparum/isolation & purification
8.
Signal Transduct Target Ther ; 6(1): 194, 2021 05 17.
Article in English | MEDLINE | ID: covidwho-1232064

ABSTRACT

Recent evidence suggests that CD147 serves as a novel receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Blocking CD147 via anti-CD147 antibody could suppress the in vitro SARS-CoV-2 replication. Meplazumab is a humanized anti-CD147 IgG2 monoclonal antibody, which may effectively prevent SARS-CoV-2 infection in coronavirus disease 2019 (COVID-19) patients. Here, we conducted a randomized, double-blinded, placebo-controlled phase 1 trial to evaluate the safety, tolerability, and pharmacokinetics of meplazumab in healthy subjects, and an open-labeled, concurrent controlled add-on exploratory phase 2 study to determine the efficacy in COVID-19 patients. In phase 1 study, 59 subjects were enrolled and assigned to eight cohorts, and no serious treatment-emergent adverse event (TEAE) or TEAE grade ≥3 was observed. The serum and peripheral blood Cmax and area under the curve showed non-linear pharmacokinetic characteristics. No obvious relation between the incidence or titer of positive anti-drug antibody and dosage was observed in each cohort. The biodistribution study indicated that meplazumab reached lung tissue and maintained >14 days stable with the lung tissue/cardiac blood-pool ratio ranging from 0.41 to 0.32. In the exploratory phase 2 study, 17 COVID-19 patients were enrolled, and 11 hospitalized patients were involved as concurrent control. The meplazumab treatment significantly improved the discharged (P = 0.005) and case severity (P = 0.021), and reduced the time to virus negative (P = 0.045) in comparison to the control group. These results show a sound safety and tolerance of meplazumab in healthy volunteers and suggest that meplazumab could accelerate the recovery of patients from COVID-19 pneumonia with a favorable safety profile.


Subject(s)
Antibodies, Monoclonal, Humanized , COVID-19 Drug Treatment , COVID-19/metabolism , Lung/metabolism , SARS-CoV-2/metabolism , Adolescent , Adult , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/pharmacokinetics , COVID-19/pathology , Double-Blind Method , Female , Humans , Lung/pathology , Lung/virology , Male , Middle Aged
9.
J Clin Pharmacol ; 61(8): 1096-1105, 2021 08.
Article in English | MEDLINE | ID: covidwho-1130518

ABSTRACT

PERJETA (pertuzumab), administered with Herceptin (trastuzumab), is used in the treatment of human epidermal growth factor receptor 2-positive breast cancer. Pertuzumab is currently approved with an initial loading dose of 840 mg, followed by a 420-mg maintenance dose intravenously every 3 weeks. A reloading dose is required if there is a ≥6-week delay in treatment. In response to the potential treatment disruption due to COVID-19, the impact of dose delays and alternative dosing regimens on intravenous pertuzumab for human epidermal growth factor receptor 2-positive breast cancer treatment is presented. Simulations were conducted by using the validated population pharmacokinetic model for pertuzumab, and included (1) 4-, 6-, and 9-week dose delays of the 840 mg/420 mg every 3 weeks dosing regimen and (2) 840 mg/420 mg every 4 weeks and 840 mg every 6 weeks alternative dosing regimens. Simulations were compared with the currently approved pertuzumab dosing regimen. The simulations in 1000 virtual patients showed that a dose reload (840 mg) is required following a dose delay of ≥6 weeks to maintain comparable Ctrough (lowest concentration before the next dose is given) levels to clinical trials. The 840 mg/420 mg every 4 weeks and 840 mg every 6 weeks alternative dosing regimens decrease median steady-state Ctrough by ≈40% compared with the approved regimen, and <90% of patients will be above the target Ctrough . Thus, the alternative 840 mg/420 mg every 4 weeks and 840 mg every 6 weeks pertuzumab dosing regimens are not recommended. Flexibility for intravenous PERJETA-based regimens is available with an alternative route of pertuzumab administration (subcutaneous vs intravenous).


Subject(s)
Antibodies, Monoclonal, Humanized , Breast Neoplasms/drug therapy , Dose-Response Relationship, Drug , Maintenance Chemotherapy/methods , Receptor, ErbB-2/antagonists & inhibitors , Time-to-Treatment , Trastuzumab , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/pharmacokinetics , Antineoplastic Combined Chemotherapy Protocols , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , COVID-19/epidemiology , COVID-19/prevention & control , Computer Simulation , Consolidation Chemotherapy/methods , Drug Administration Routes , Drug Administration Schedule , Female , Humans , Infection Control/methods , SARS-CoV-2 , Trastuzumab/administration & dosage , Trastuzumab/pharmacokinetics
10.
J Intern Med ; 289(5): 738-746, 2021 05.
Article in English | MEDLINE | ID: covidwho-1054555

ABSTRACT

BACKGROUND: Published reports on tocilizumab in COVID-19 pneumonitis show conflicting results due to weak designs or heterogeneity in critical methodological issues. METHODS: This open-label trial, structured according to Simon's optimal design, aims to identify factors predicting which patients could benefit from anti-IL6 strategies and to enhance the design of unequivocal and reliable future randomized trials. A total of 46 patients with COVID-19 pneumonia needing of oxygen therapy to maintain SO2 > 93% and with recent worsening of lung function received a single infusion of tocilizumab. Clinical and biological markers were measured to test their predictive values. Primary end point was early and sustained clinical response. RESULTS: Twenty-one patients fulfilled pre-defined response criteria. Lower levels of IL-6 at 24 h after tocilizumab infusion (P = 0.049) and higher baseline values of PaO2/FiO2 (P = 0.008) predicted a favourable response. CONCLUSIONS: Objective clinical response rate overcame the pre-defined threshold of 30%. Efficacy of tocilizumab to improve respiratory function in patients selected according to our inclusion criteria warrants investigations in randomized trials.


Subject(s)
Antibodies, Monoclonal, Humanized , Biomarkers, Pharmacological/analysis , COVID-19 , Drug Monitoring/methods , Interleukin-6 , Pneumonia, Viral , Aged , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/pharmacokinetics , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/physiopathology , COVID-19/therapy , Female , Humans , Immunologic Factors/administration & dosage , Immunologic Factors/pharmacokinetics , Infusions, Intravenous , Interleukin-6/antagonists & inhibitors , Interleukin-6/blood , Italy/epidemiology , Male , Oximetry/methods , Oxygen Inhalation Therapy/methods , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Pneumonia, Viral/etiology , Predictive Value of Tests , Respiratory Function Tests/methods , SARS-CoV-2/isolation & purification , Treatment Outcome
11.
Clin Pharmacol Ther ; 109(3): 688-696, 2021 03.
Article in English | MEDLINE | ID: covidwho-969508

ABSTRACT

Interleukin-6 (IL-6)-mediated hyperinflammation may contribute to the mortality of coronavirus disease 2019 (COVID-19). The IL-6 receptor-blocking monoclonal antibody tocilizumab has been repurposed for COVID-19, but prospective trials and dose-finding studies in COVID-19 have not yet fully reported. We conducted a single-arm phase II trial of low-dose tocilizumab in nonintubated hospitalized adult patients with COVID-19, radiographic pulmonary infiltrate, fever, and C-reactive protein (CRP) ≥ 40 mg/L. We hypothesized that doses significantly lower than the emerging standards of 400 mg or 8 mg/kg would resolve clinical and laboratory indicators of hyperinflammation. A dose range from 40 to 200 mg was evaluated, with allowance for one repeat dose at 24 to 48 hours. The primary objective was to assess the relationship of dose to fever resolution and CRP response. Thirty-two patients received low-dose tocilizumab, with the majority experiencing fever resolution (75%) and CRP decline consistent with IL-6 pathway abrogation (86%) in the 24-48 hours following drug administration. There was no evidence of a relationship between dose and fever resolution or CRP decline over the dose range of 40-200 mg. Within the 28-day follow-up, 5 (16%) patients died. For patients who recovered, median time to clinical recovery was 3 days (interquartile range, 2-5). Clinically presumed and/or cultured bacterial superinfections were reported in 5 (16%) patients. Low-dose tocilizumab was associated with rapid improvement in clinical and laboratory measures of hyperinflammation in hospitalized patients with COVID-19. Results of this trial provide rationale for a randomized, controlled trial of low-dose tocilizumab in COVID-19.


Subject(s)
Antibodies, Monoclonal, Humanized , C-Reactive Protein/analysis , COVID-19 Drug Treatment , COVID-19 , Fever , Pneumonia, Viral , Aged , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/adverse effects , Anti-Inflammatory Agents/pharmacology , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/pharmacokinetics , COVID-19/blood , COVID-19/physiopathology , Dose-Response Relationship, Drug , Drug Monitoring/methods , Female , Fever/diagnosis , Fever/drug therapy , Humans , Male , Pneumonia, Viral/diagnosis , Pneumonia, Viral/drug therapy , Pneumonia, Viral/etiology , Receptors, Interleukin-6/antagonists & inhibitors , SARS-CoV-2/isolation & purification , Severity of Illness Index , Time Factors , Treatment Outcome
12.
N Engl J Med ; 383(5): 452-459, 2020 07 30.
Article in English | MEDLINE | ID: covidwho-692294

ABSTRACT

BACKGROUND: Insufficient vaccine doses and the lack of therapeutic agents for yellow fever put global health at risk, should this virus emerge from sub-Saharan Africa and South America. METHODS: In phase 1a of this clinical trial, we assessed the safety, side-effect profile, and pharmacokinetics of TY014, a fully human IgG1 anti-yellow fever virus monoclonal antibody. In a double-blind, phase 1b clinical trial, we assessed the efficacy of TY014, as compared with placebo, in abrogating viremia related to the administration of live yellow fever vaccine (YF17D-204; Stamaril). The primary safety outcomes were adverse events reported 1 hour after the infusion and throughout the trial. The primary efficacy outcome was the dose of TY014 at which 100% of the participants tested negative for viremia within 48 hours after infusion. RESULTS: A total of 27 healthy participants were enrolled in phase 1a, and 10 participants in phase 1b. During phase 1a, TY014 dose escalation to a maximum of 20 mg per kilogram of body weight occurred in 22 participants. During phases 1a and 1b, adverse events within 1 hour after infusion occurred in 1 of 27 participants who received TY014 and in none of the 10 participants who received placebo. At least one adverse event occurred during the trial in 22 participants who received TY014 and in 8 who received placebo. The mean half-life of TY014 was approximately 12.8 days. At 48 hours after the infusion, none of the 5 participants who received the starting dose of TY014 of 2 mg per kilogram had detectable YF17D-204 viremia; these participants remained aviremic throughout the trial. Viremia was observed at 48 hours after the infusion in 2 of 5 participants who received placebo and at 72 hours in 2 more placebo recipients. Symptoms associated with yellow fever vaccine were less frequent in the TY014 group than in the placebo group. CONCLUSIONS: This phase 1 trial of TY014 did not identify worrisome safety signals and suggested potential clinical benefit, which requires further assessment in a phase 2 trial. (Funded by Tysana; ClinicalTrials.gov number, NCT03776786.).


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Yellow Fever Vaccine , Yellow Fever/drug therapy , Yellow fever virus/immunology , Adult , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/pharmacokinetics , Dose-Response Relationship, Drug , Double-Blind Method , Half-Life , Humans , Kaplan-Meier Estimate , Viremia/drug therapy , Yellow Fever/virology , Yellow fever virus/drug effects
13.
Clin Pharmacol Ther ; 108(3): 425-427, 2020 09.
Article in English | MEDLINE | ID: covidwho-505635

ABSTRACT

The global pandemic of coronavirus disease 2019 (COVID-19) represents an emergent threat to the public health. Mitigation strategies have been employed to varying effect in many Western nations. Treatment strategies to effectively address COVID-19 and equitably distribute resources are needed, especially in overwhelmed hospitals.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , COVID-19 Drug Treatment , Interleukin-6/blood , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal, Humanized/therapeutic use , Dose-Response Relationship, Drug , Humans , Interleukin-6/antagonists & inhibitors , Pharmacology, Clinical
SELECTION OF CITATIONS
SEARCH DETAIL